
Generation of Development Environments for the Arden Syntax

Magnus BAng, M.Sc., and Henrik Eriksson, Ph.D.
Department of Computer and Information Science, Linkoping University

S-581 83 Link'oping, Sweden
E-mail: {magba, her}@ida.liu.se

Providing appropriate development environments
for specialized languages requires a significant
development and maintenance effort. Specialized
environments are therefore expensive when com-
pared to their general-language counterparts. The
Arden Syntax for Medical Logic Modules (MLM) is
a standardized language for representing medical
knowledge. We have used PROTAGA-JI, a know-
ledge-engineering environment, to generate a num-
ber of experimental development environments for
the Arden Syntax. MADAILLE is the resulting MLM
editor, which provides a user-friendly environment
that allows users to create and modify MLM defini-
tions. Although MEDAILLE is a generated editor, it
has similar functionality, while reducing the
programming effort, as compared to other MLM
editors developed using traditional programming
techniques. We discuss how developers can use
PROTtGt-Il to generate development environ-
ments for other standardized languages and for
generalprogramming languages.

INTRODUCTION
Software-development tools are computer
programs that aid or automate the software-
development process. The aim for such tools is to
decrease the development effort and to increase the
reliability and quality of software. Although there
are commercially-available development environ-
ments that support this task, these environments are
often inflexible in terms of their configuration
capabilities for different tasks. Specialized custom-
tailored development tools can increase software
quality by supporting the projects, the coding and
documentation routines, and the target applications.
Providing tools, such as development environments
for specialized languages, requires a significant
development effort. As a result, development
environments for such languages are expensive.

Knowledge-acquisition tools (KA-tools) are
computer programs that are designed for eliciting
knowledge from domain experts and knowledge
engineers.

Developers have used meta-tools to generate
successful KA-tools for various domains, such as
elevator configuration and for the well-known
INTERNIST-I system [1,2]. By adopting the meta-
tool approach it is possible to provide appropriate
development environments for general and
specialized programming languages.

An MLM editor is a KA-tool that we can regard
as a basic development environment for a special-
ized language. Several research groups have
developed MLM editors using traditional program-
ming approaches. Generally, these implementations
are complex and difficult to maintain. To overcome
these problems, we have used PROTEGE-II to gen-
erate a number of development environments for
the Arden Syntax.

The PROTGE-II [3] approach provides a
methodology and a set of programming tools that
support the software developer in developing
knowledge-based systems using reusable compo-
nents. Originally, the task of PROTEIGE-II was to
generate domain-specific KA-tools from domain
ontologies. During this work, however, we have
established that PROTEIGE-II can be used to
generate development environments for general
programming languages as well. The case study
contributes to the understanding of the generality of
the meta-tool approach and the principles and
benefits of PROTJAGE-II.

BACKGROUND
The Arden Syntax
When developing medical decision-support
systems, a common experience is that the creation
of large, medical knowledge bases is a time-
consuming and difficult task [4]. Sharing
knowledge among departments is therefore
desirable. The Arden Syntax [5] for Medical Logic
Modules is a standardized language for
representing medical knowledge. It is designed for
knowledge sharing, and is derived largely from the
HELP [6] and RMRS [7] systems.

1091-8280t97/$5.00 0 1997 AMIA, Inc. 313

Maintenance:
title: Screen for hypokalemia with digoxin therapy;;
filename: hypokalemia_and_digoxin;;
version: 1.06;;
institution: Columbia-Presbyterian Medical Center;;
author: George Hripcsak, M.D.;;

(hripcsa@cucis.columbia.edu);;
specialist: George Hripcsak, M.D.;;
date: 1993-09-17;;
validation: production;;

Library:
purpose: Warn the health care provider of hypokalemia

in the setting of digoxin therapy.;;
explanation: Whenever a serum or whole blood potassium

value is stored, it is checked for hypokalemia
(less than 3.3).;;

keywords: hypokalemia; digoxin; arrhythmia;;
citations: 1. Intemational Commttee of Medical Journals.

NEJM 1991:324:4244;;
links: CTIM-1.14.5;;

Knowledge:
type: data-driven;;
data: K:=read last (serum potassium) where it

occurred before now;;
priority: 50;;
evoke: potassium storage;;
logic: If K>=3.3 tfien conclude false; endif;;
action: write This patient has hypokalemia in the

setting of digoxin therapy..."
urgency: 50;;

End:

FIGURE 1. A sample Medical Logic ModuleI that
provides alerts regarding a patient's blood status.

The knowledge consists of a set of independent
modules, Medical Logic Modules (MLMs). Decision-
support systems can use MLMs to provide alerts,
management suggestions, data interpretations,
treatment schemes, diagnosis scores and so on. An
MLM is a text file divided into three categories:
library, maintenance and knowledge. The categories
consist of a number of slots. The slots of the library
and maintenance categories support maintenance of
the MLM. Slots of the knowledge category embody
the actual knowledge, which for example consists of
Pascal-like conditional rules that define medical facts.
Figure 1 shows an MLM.

Development Environments and MLM Editors
The Arden Syntax is similar to traditional procedural
programming languages; the MLMs are text files
with a well-defined syntax, and the required
functionality for MLM editors is similar to the
requirements for development environments for
programming. In both cases, there is a need for
syntax checking, the means to build, debug and run
code, and to evaluate statements. Other desirable
features are management of code, version handling
and generation of dependency graphs. Hence, we can
view MLM editors as development environments for
a specialized programming language, in this case the
Arden Syntax.

Due to the resemblance between the Arden Syntax
and many procedural programming languages, we

believe that the task of building MLM editors is an
appropriate test case for evaluation of the
PROTEGI&-II approach when generating
development environments for general programming
languages.

PROTtGE-II
PROTtGIt-II [3] is a methodology and a knowledge-
engineering environment that supports developers
and domain experts when developing knowledge-
based systems. In PROTEGGt-II, the programmer can
select problem-solving methods from a library of
reusable components and configure these to perform
tasks needed in the application.

DASH [8] is a meta-level tool within the
PROT,GI-II architecture that provides the means to
develop KA-tools by automated rapid prototyping.
The basis for generation of KA-tools is a declarative
ontology specification [9]. DASH takes an ontology
as input and automatically generates the KA-tool
desired.

PROTtGE-II has been used to develop a wide
variety of knowledge-based systems in several
application domains, including protocol-based
medical care [9], configuration of elevators based on
engineering and safety constraints [1], and a re-
construction of INTERNIST-I [2].

Development of KA-tools
An ontology, in the meta-tool context, denotes a
declarative specification that models certain aspects
of the real world, for example the relationships
among objects in a domain. An ontology can be
defined by a hierarchy of classes, where each class
represents an object of the domain [10]. Typically,
each class has attributes, called slots, which model
the properties of the class.

When generating KA-tools using PROTtGIt-I,
the first step is to model and characterize the
terminology and relations of the problem domain.
This step is the ontology development. MODEL [11]
is the language for representing ontologies in
PROTEGJt-II, and is a frame-based knowledge-
representation language based on COOL, the object-
oriented part of the CLIPS language [12]. The second
step is to run DASH on the ontology and establish the
layout design. Here, the developer can resize and re-
position widgets, and change labels by direct
manipulation using an interface builder. The output
from DASH is a declarative specification of the target
tool which can be executed either by a run-time
system or be compiled into C code [11].

' Taken from the public library ofMLMs at the Columbia-
Presbyterian Medical Center.

314

Maintenance (defc
tite...;;
filename.;

Library
purpose...;;
explanaton...;;

Knowledge
type...;;
data...;; -'

class Mm
(is-a USER)
(slot linktomaint (cardinal ity single)

(allowed-classes Maintenance)
(type instance))

(slot file (type string))

(slot filename (type string)'-
(ka-specificaton browserkey))

(slot data (type string)
(allowed-syntax 'syntax-data.y'))

(slotevke (type string))
(slot logic (type sting)

(alHlowed-syntax "syntax-4ogic.y)))

FIGURE 2. The mapping among the MLMs, ontology and form of the resulting development environment. The "title"
slot (with the specified type "string") in the ontology represents the title slot of the MLM. The ontology slot has its
corresponding widget in the form generated by DASH.

ONTOLOGY DEVELOPMENT
We now discuss issues conceming how we can

develop an ontology for the Arden Syntax. By
studying the Arden Syntax definition (in BNF) and
the semantics of the MLM slots, we can establish
the mapping among the slots defined in the Arden
Syntax specification and the classes and slots of the
ontology. One approach is to create an "MLM-
class" that consists of all the slots of the MLM.
However, we abandoned this solution due to

reasons concerning the human-computer interface.
In this case, DASH would generate a single form
with all the slots of the MLM. When working with
editors in daily practice, users generally find single
forms undesirable because of information
overload2. The majority of the slots support
maintenance and hence the editor should not
display them by default. We have translated the
MLM to a number of classes, representing different
parts of the MLM. Figure 2 illustrates how we

model part of the MLM in the ontology.
We developed incrementally three different

ontologies and therefore three different versions of
the MLM editor using DASH. First, we developed a

prototype that was a replica of an existing system
developed at the Department of Biomedical
Engineering, Medical Informatics at Linkoping
University. This established the validity of the

PROTIAG&-II approach in terms of generating basic
editors for MLMs. Second, by reusing and modify-
ing the previous ontology, we developed a new

version with increased functionality such as

organization of the MLMs. MItDAILLE is the final
version of the MLM editor. We developed it in the

same manner by reusing and modifying the
ontology from the previous version.

MEDAILLE
MEDAILLE is a generated development environ-
ment for the Arden Syntax that manages a database
of MLMs and provides support for entering and
editing the MLMs. Figure 3 shows part of the user
interface of MEDAILLE. The organization of the
MLMs is a hierarchical structure with respect to the
medical domain and author. Syntax checking of
slots and integrated terminology support in terms of
a semantic network of interrelated frames are also
available. MEDAILLE has on-line help that
provides support for Arden Syntax and how to use
the editor.

Let us compare M]tDAILLE and two editors
developed at the Department of Biomedical
Engineering, Medical Informatics at Linkoping
University [13]. Table 1 provides a functional
comparison. The first editor, SEMLA [14], runs
under the X Window System. The development
tool used to produce SEMLA was TeleUSE [15]
together with a toolbox for compiler construction.
The second editor runs under the MS Windows
environment [16]. The basis for this editor is
SEMLA, and the development tool was Visual
C++. The comparative study shows that the MLM
editors generated by PROTEGE-II embody much
of the behavior provided by editors developed
using traditional programming approaches.

TABLE 1. Comparison of functionality in the
PROTItGlt-II, TeleUSE and Visual C++ approaches.

Available Functions PROTEGE TeleUSE Visual C++
Basic Editing l
Syntax Checking_
Terminology _
MLM Organization
Version Control
On-line Help _ _
Syntax-directed Editing

2 Personal communication, Dr. N. Shahsavar, LinkOping 315
University.

FIGURE 3. A part ofMIPDAILLE, the MLM editor generated by PROTEGlt-II.

Using PROTEGE-II, we produced three different
versions of the MLM editor in just 14 person-weeks.
Using Visual C++, the development effort for an editor
was 15 person-weeks and 30 person-weeks for the
SEMLA editor.

DISCUSSION
As we have seen, it is possible take the PROTlNGt-II
approach beyond the generation of traditional KA-
tools. Because the architecture supports generation of
development environments for the Arden Syntax, it
should be possible to use the same approach for other
programming languages, such as C, Java and Ada. The
advantages that PROTtGE-II provides when building
traditional KA-tools, thus extend to the generation of
development environments for general programming
languages.

We found that the main advantage of applying the
meta-tool approach is the flexibility that it provides.
This flexibility is manifold. Rapid prototyping provides
a means to reconsider the target tool if it is inadequate.
A radical change in the fundamental definitions of the
target tool is unproblematic. It is a relatively easy task
to regenerate it with some minor changes in the domain
ontology and in the BNF grammar files. In addition, it
is relatively easy to port the target tool to other

316

platforms. We ported the MLM ontology to the MS
Windows version of PROTEGE-II, Protege/Win. As
part of this process, we made minor adjustments in the
ontology and in the graphical user interface. The effort
required for the port was about one person-week.
Furthermore, it is possible to reuse parts of the target
tools (perhaps developed by others) and integrate them
into a new tool by merging the ontologies.

PROT1tG&-II supports the developer in custom-
tailoring traditional KA-tools to suit the domain
experts' needs and the problem domain. In the case of
development environments for programming
languages, the environments can be custom-tailored to
suit the users and the situation, in this case
programmers, programming languages and target
applications. Thus, it is possible to create development
tools that are in between general development
environments for programming languages and domain-
oriented KA-tools. Such tools could increase software
quality by supporting project-specific programming
and maintenance (e.g., by supporting the local coding
and documentation routines, and the target
applications).

Although PROTEIGt-II supports layout-oriented
custom adjustments of user interfaces, we found that
there are other important features that should be

configurable and extendible. The current version of
PROTEGE-II does not provide any Application
Programming Interface (API) or scripting language that
developers can use to further custom-tailor the target
tools (e.g., to provide syntax-directed editing support
for expressions). Other desirable, but currently not
supported, features for generating development
environments are version control, debugger tool
integration, code builder, graphical tree browsers and
hypertext support. Although it is possible to extend
PROTEGE-II with some of these features, there are
still advantages in providing an API. For example, the
benefit of the architecture would increase significantly
if developers could implement and share their own
extensions. Moreover, the meta-tool architecture itself
could consist of a set of plug-in components.

CONCLUSION
We approached the problem of implementing develop-
ment environments for the Arden Syntax by using
PROTAGE-II. The resulting MLM editor,
MEDAILLE, is similar to other hand-crafted MLM
editors. We found that the approach decreases the
maintenance problems, reduces the development effort
and provides a means to custom-tailor the development
environment. The work illustrates that PROTEGGt-II
can be used to generate not only traditional KA-tools,
but also development environments for general and
specialized programming languages. To support full
development of such environments, PROTEGE-II
needs an API as well as programming-support
components (e.g., compiler and debugger interfaces).
Nevertheless, we believe that PROTIGHt-II and its MS
Windows version, Protege/Win, are appropriate
platforms for the design of such meta-level
environments.

Acknowledgments
We would like to thank Dr. Nosrat Shahsavar and
Professor Toomas Timpka for their comments and
suggestions.

The work has been supported in part by the Swedish
National Board for Industrial and Technical Develop-
ment (NUTEK), grant no. 93-3233 and the Swedish
Research Council for Engineering Sciences (TFR),
grant no. 95-186.

The PROTEIGE-II research project URL:
http://smi.stanford.edu/projects/protege.

The MItDAILLE homepage URL:
http://www.ida.liu.se/-magba/medaille.html.

References
1. Gennari JH, Altman RB and Musen MA. Reuse

with PROTEIGEI-II: From elevators to ribosomes.
Proceedings of the ACM-SIGSOFT Symposium on
Software Reusability. Seattle, WA. 1995:72-80.

2. Musen MA, Gennari JH, & Wong WW. A Rational
Reconstruction of INTERNIST-I using PROTEGE-
II. I9th Annual Symposium on Computer
Applications in Medical Care. New Orleans, L.A.
1995:289-293.

3. Musen MA, Gennari JH, Eriksson H, Tu SW,
Puerta, AR. PROTGE4-II: Computer support for
devel-opment of intelligent systems from libraries
of components. Proceedings of Medinfo'95.
Vancouver, BC; 1995:766-770.

4. Gao X, Realizing Medical Decision Support using
the Arden Syntax as Knowledge Representation.
Licentiate Thesis no. 399. Linkoping Studies in
Science and Technology. 1993.

5. Hripcsak G, Clayton PD, Pryor TA, Haug P,
Wigertz OB, Van der lei J. The Arden Syntax for
Medical Logic Modules. Proceedings of the 14th
Annual Symposium on Computer Applications in
Medical Care. Washington, D.C. 1990:200-204.

6. HELP Frame Manual. Version 1.6. Salt Lake
City:LDS Hospital. 1989.

7. McDonald CJ, Action-Oriented Decisions in
Ambulatory Medicine. Chicago: Year Book
Medical Publishers. 1981.

8. Eriksson H, Puerta AR, Musen MA. Generation of
knowledge acquisition tools from domain ontolo-
gies, International Journal of Human Computer
Studies. 1994;41:425-453.

9. Musen MA, Tu SW, Das AK, Shahar Y. EON: A
Component-Based Approach To Automation of
Protocol-Directed Therapy. Journal of the Medical
Informatics Association. 1996;3(6): 367-388.

10. Neches R, Fikes R. Enabling technology for know-
ledge sharing. Al Magazine. 1991;12(3): 36-58.

11. Gennari JH. A brief guide to MAITRE and
MODEL: an ontology editor and a frame-based
knowledge representation language. Working Paper
KSL 93-45. Stanford University, Palo Alto, CA.
1993.

12. NASA. CLIPS Reference Manual. Software
Technology Branch. Lyndon B. Johnson Space
Center. Houston, TX. 1991.

13. Bang M. Automated Generation of Editors for
Medical Logic Modules Using Ontologies. M.Sc.
Thesis LiTH-IDA-Ex-9650. Linkoping University.
1996.

14. Carlsson M, Ohlsson P. SEMLA - ett editerings-
verktyg fbr medicinsk kunskapsinsamling enligt
Arden syntax [SEMLA - An Editor for Medical
Knowledge-Acquisition for the Arden Syntax],
M.Sc. Thesis ULi-IMT-EX-191, Linkoping Univer-
sity, 1991.

15. Alsys Inc. TeleUSE System Overview. Alsys Inc
San Diego, CA, 1994.

16. Rosengren 0. Utveckling av kunskapsbas-editor lbr
Arden syntax [Development of a Knowledge-Base
Manager Using Arden Syntax], M.Sc. Thesis LIU-
IMT;143, Linkbping University. 1995.

317

